cd /workspace/musubi-tuner/
[general]
resolution = [1024, 1024]
caption_extension = ".txt"
batch_size = 1
enable_bucket = true
bucket_no_upscale = false
[[datasets]]
image_directory = "dataset/train"
cache_directory = "dataset/cache"
num_repeats = 1
python src/musubi_tuner/qwen_image_cache_latents.py \
--dataset_config dataset/data_comfy.toml \
--vae models/vae.safetensors
python src/musubi_tuner/qwen_image_cache_text_encoder_outputs.py \
--dataset_config dataset/data_comfy.toml \
--text_encoder models/qwen_2.5_vl_7b.safetensors \
--batch_size 1
accelerate launch --num_cpu_threads_per_process 1 --mixed_precision bf16 src/musubi_tuner/qwen_image_train_network.py \
--dit models/qwen_image_bf16.safetensors \
--vae models/vae.safetensors \
--text_encoder models/qwen_2.5_vl_7b.safetensors \
--dataset_config dataset/data_comfy.toml \
--sdpa --mixed_precision bf16 --fp8_base \
--timestep_sampling shift \
--weighting_scheme none --discrete_flow_shift 2.2 \
--optimizer_type adamw8bit --learning_rate 5e-5 --gradient_checkpointing \
--max_data_loader_n_workers 2 --persistent_data_loader_workers \
--network_module networks.lora_qwen_image \
--network_dim 16 \
--max_train_epochs 300 --save_every_n_epochs 25 --seed 42 \
--output_dir output --output_name cendy-qwen-image-lora-v1 \
--blocks_to_swap 20
python src/musubi_tuner/convert_lora.py --input output/cendy-qwen-image-lora-v1.safetensors --output output/cendy-qwen-image-lora-comfy-v1.safetensors --target other
注意:在具体使用时需要把文件名路径名按照实际情况修改