镜像社区
部署GPU实例
文档中心
常见问题(FAQ)
通义
LLM
QwQ-32B-Preview
QwQ-32B-Preview
0/小时
v1.0

QwQ-32B-Preview

镜像使用方法

QwQ-32B-Preview需要至少64G显存运行,建议配置选择24G 4卡

vllm运行需要修改防火墙,请记得修改防火墙,添加8000端口(vllm默认使用端口为8000)

镜像已安装vllm,您可以使用vllm运行。

vllm serve  /model/Qwen/QwQ-32B-Preview/snapshots/1032e81cb936c486aae1d33da75b2fbcd5deed4a/  -tp 4 --api-key test1234

调用的python代码

from openai import OpenAI
client = OpenAI(
        api_key=test1234,
        base_url=http://{内网/外网 ip}:{端口}/v1
    )
model_name = client.models.list().data[0].id
print(use model name: , model_name)


response = client.chat.completions.create(
    model=model_name,  # 填写需要调用的模型名称
    messages=[{role: user, content: 写一篇200字的作文}],
    temperature = 1,
)

print(response.choices[0].message.content)

简介

QwQ-32B-Preview 是由 Qwen 团队开发的一款实验性研究模型,旨在推动 AI 推理能力的进步。作为预览版发布,它展示了有前景的分析能力,但也存在几个重要的局限性:

  1. 语言混合和代码切换:模型可能会意外地混合语言或在语言之间切换,影响回应的清晰度。
  2. 递归推理循环:模型可能会进入循环推理模式,导致长时间的回应却没有得出结论。
  3. 安全性和伦理问题:模型需要增强安全措施,以确保可靠和安全的性能,用户在部署时应谨慎。
  4. 性能和基准测试的局限性:该模型在数学和编程领域表现优秀,但在其他领域(如常识推理和细致语言理解)上仍有提升空间。

规格

  • 类型:因果语言模型
  • 训练阶段:预训练与后训练
  • 架构:基于 Transformer,包含 RoPE、SwiGLU、RMSNorm 和 Attention QKV 偏置
  • 参数数量:32.5B
  • 非嵌入参数数量:31.0B
  • 层数:64
  • Attention 头数(GQA):Q 40 个,KV 8 个
  • 上下文长度:完整的 32,768 个 token

欲了解更多详情,请参考我们的 博客。您还可以查看 Qwen2.5 的 GitHub文档

系统要求

Qwen2.5 的代码已经集成在最新的 Hugging Face transformers 库中,建议您使用 transformers 的最新版本。

如果您使用的是 transformers<4.37.0,则会遇到以下错误:

KeyError: qwen2

快速开始

以下提供了一个使用 apply_chat_template 的代码示例,展示了如何加载分词器和模型,并生成内容。

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = Qwen/QwQ-32B-Preview

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=auto,
    device_map=auto
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = How many r in strawberry.
messages = [
    {role: system, content: You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.},
    {role: user, content: prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors=pt).to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

引用

如果您觉得我们的工作对您有帮助,欢迎引用我们的研究。

@misc{qwq-32b-preview,
    title = {QwQ: Reflect Deeply on the Boundaries of the Unknown},
    url = {https://qwenlm.github.io/blog/qwq-32b-preview/},
    author = {Qwen Team},
    month = {November},
    year = {2024}
}

@article{qwen2,
      title={Qwen2 Technical Report}, 
      author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
      journal={arXiv preprint arXiv:2407.10671},
      year={2024}
}
镜像信息
@苍耳阿猫
已使用
4
镜像大小30GB
最近编辑2024-12-04
支持卡型
RTX40系48G RTX40系
+2
框架版本
PyTorch-2.5.1+cu124
CUDA版本
12.4
应用
JupyterLab: 8888
版本
v1.0
2025-02-28
PyTorch:2.5.1+cu124 | CUDA:12.4 | 大小:30.00GB